

Add On Skills - 2022 Final Presentation

Białystok University of Technology

Faculty of Civil Engineering and Environmental Sciences

Academic year 2021/2022

TEAM 03

Andrea Menci Tomasz Wysocki Enveras Jasinskis F. Anamaria Valderrama Kaspars Pigaskovs

Renewable Energy

Solar collector lab

The instantaneous efficiency of the solar collector is the ratio of the useful energy to the energy of solar radiation. The instantaneous efficiency of the solar collector can be determined at a given moment from the ratio of the useful power Q_{μ} to the solar radiation power:

$$\eta = \frac{Q_u}{I \cdot A} \cdot 100\% = \frac{m \cdot c \cdot \Delta T}{I \cdot A} \cdot 100\%$$

Renewable Energy

Solar collector lab

RTA

Renewable Energy

Wind turbines

Renewable energy

HVAC design

	NI	IE
U	11	IF.

UCO

VTDK

RTA

	HVAC de	esi	ξn
Name of proj.:	Design of floor heating system		_
			1
Address:	Via Celestino Bianchi, 10		(
City:	Firenze		1
Designer:	Andrea Menci		1

Date of calc: Monday 4 July 2022 16:54 6

Ľ

2 H

*	Info on	pipes type:	
	Type A:	🔗 KAN BLUEFLOOR	Type B:
Ţ Ŀ IJŢ	Type C:		Type D:
14	Type E:		Type F:
₽	Type G:		Туре Н:
	Type I:		Type J:
R	Type K:		Type L:
	Type M:		Type N:
	Type O:		Type P:

Symbol of the heat source: HANGING BOILER

Parameters of the heating agent:

	-		
θ _s , [°C]:	50,00	θ _r , [°C]:	40,00
θ _{r,r} , [°C]:	33,67		
Type of agent:	Water	Concentration, [%]:	100,0

Info on the heating system:

The total water flow in the installation ${\tt M}_{\tt inst},$ [kg/s]:	0,06
Total installation capacity V _{inst} , [1]:	3
Calculation thermal power of the installation $\Phi_{\mathrm{HL,inst}}$, [W]:	286
Power lost $\Phi_{lost,inst}$, [W]:	89
Total power transferred by the installation $\Phi_{ t tot,inst}$, [W]:	376

Parameters of the heat source: HANGING BOILER	
$\Delta p_{\rm HS}$, [Pa]: 1000 V _{HS} , [1]:	5,
Required disposable pressure in the source Ap _{disp} , [Pa]:	808
Additional power reserve for charging the buffer $\Phi_{ m HL,reserve}$, [W]	
The total design power of the heat source in winter $\Phi_{ extsf{HL,winter}}$, []:	286
culated thermal power of the source in the summer $\Phi_{ extsf{HL}, extsf{summer}}$ [W]:	
design power of the heat source in transition period $\Phi_{ m HL,part}$, []:	
Number of concurrently working flat stations. $N_{FS,sim}$, [pcs.]:	

Info on the material	d	λ	ρ	R
	m	W/(m·K)	kg/m ³	m²·K/W
Floor covering: Linoleum 0.015 m ^{2.} K/W				0,015
Cement screed.	0,0700	1,300	2200	0,054
KAN-therm Tacker foamed polystyrene board EPS100 038 (PS20)	0,0200	0,038	20	0,526
Profil2 foamed polystyrene board EPS100 038 (PS20) whit PS f	0,0900	0,038	20	2,368
PE foil for laying under thermal insulation D = 0,15 mm	0,0002	0,200	1300	0,001
Concrete base under the floor.	0,1500	1,400	2200	0,107

Design of a school in Bialystok

Erasmus+ add-on-skills

ф	Design of a school in Bialystok								
BUT Renewable energy HVAC design									
UNIFI	21 December 9:00	21 December 16:00							
UCO VTDK									
RTA									
	21 June 9:00	21 June 16:00 Erasmus+ add-on-skills							

HVAC design

Planibel

Clearlite

6 mm

Thermally

toughened

Time shift

Periodic thermal transmittance

UNIFI

UCO

VTDK

RTA

Design of a school in Bialystok

φ

[-]

[h]

IYiel [W/m2K]

Rt [m2K/W]

U [W/m2K]

5.607

0.178

1) Type of building elements				2) Sceglier	e il perio	do delle var	iazioni termiche	(<= 24 ore)	24		
			Periodo delle variazioni termiche T				[sec]	86400			
		Chiusura vertic	ale				Resistenza	a termica sup ir	nterna Rsi	[m2K/W]	0.13
							Resistenza	a termica sup e	esterna Rse	[m2K/W]	0.04
		Layer descripton	Thickness (s) [m]	Thermal conductivity (λ) [W/mK]	Thermal resistance [mqK/W]	Calore specifico (c) [J/kgK]	Density (ρ) [kg/m3]	Air thermal resistance [m2K/W]	Profondità di penetrazione al periodo T	ξ = s/d	Thermal Resistance [m2k/w]
Rsi	Air	Internal layer		1	2	3	4	5			0.130
1		Plasterboard panel	0.022	0.230	0.090		800				0.090
2		Air Cavity	0.070	0.000	0.000		12				0.000
3		Rock wool	0.040	0.040	1.143		100				1.143
4		OSB panel	0.025	0.130	0.102		640				0.102
5		Water and windproof sheet	0.002	0.030	0.053		40				0.053
6		Insulation layer	0.120	0.040	3.420		30				3.420
7		OSB panel	0.025	0.130	0.102		640				0.102
8		External insulation	0.020	0.040	0.500		30		#DIV/0!	#DIV/0!	0.500
9		External plaster	0.040	1.100	0.027		13		#DIV/0!	#DIV/0!	0.027
Rse	LFr	External layer									0.040
Total thickness of the stratigraphy [cm] 36.40							Total thermal resist	ance [m2K/W]	5.607		
http://www.mygreenbuildings.org				RESULTS			<u>2011 @ Ing. A</u>	ndrea Ursini	Casalena		
Regim	e p	eriodico stabilizzato	T =	24	ore			Regime s	tazionario		
Decrem	en fa	ictor	fd	[-]		#RIF!		Surface mas	s	Ms [kg/m2]	59

#RIF!

#RIF!

Resistenza termica totale

Thermal transmittance

Renewable energy

HVAC design

UNIFI

UCO

VTDK

RTA

Green Roof

In Poland temperatures range from -22°C to +30°C. Part of the roof is shaded all day.

We therefore choose to use an EXTENSIVE GREEN ROOF, which needs little water, little maintenance and the plants can survive even without the sun.

This kind of roof is less expensive than intensive green roof.

Layer of extensitive green roof: 1- Sloping floor (with insulation layer);

- 2- Rootproof waterproof covering (mechanical protection layer) 4 mm
- 3- Draining and storage element in EPS (storage capacity 51/m2) 47 mm
- 4- Protective filter element (geotextile sheet) 2 mm
- 5- Soil layer consisting of volcanic aggregates 80 mm 6- Vegetal layer composed of sedum

Total weight \rightarrow 93,00 km/m2

Design of Photovoltaic panels

1. WORK	ING CONDITIONS	
	Daily Solar Radiation	Sun peak ho
	in collector (Kwh/m ²)	(HSP)
January	0,61	0,61
February	1,25	1,25
Mach	2,61	2,61
April	3,90	3,90
Мау	5,23	5,23
June	5,32	5,32
July	5,35	5,35
August	4,55	4,55
September	3,00	3,00
October	1,61	1,61
November	0,67	0,67
December	0,55	0,55
Annual		34

	occupance
January	90
February	100
Mach	100
April	80
Мау	100
June	100
July	10
August	80
September	100
October	100
November	100
December	10

Renewable energy HVAC design

l

BUT

UNIFI

UCO

VTDK

RTA

2 961,14

Βl	JT

Renewable energy

HVAC design

UNIFI

UCO

VTDK

RTA

	$\overline{}$

4. CHARACTER	RISTICS OF T	THE PV F	PANELS	
				9. DI
Panel Power (W)	300			Power of the selecte
Panel Voltage (V)	24			NUMBER OF INVER
Working Voltage (V)			24	
Intensity in the Maximun po	wer point (A)		8	
Voltage in the Maximum Po	wer Point (V)		36	
Short Circuit Intensity (A)			9	8. DESING OF
Open Circuit Voltage (V)			46	Intensity of the selec
				NUMBER OF CHA THE
5. DESIGN OF THE PV SYSTEM	/			
Number or PV Panel in Serie			1.00	7. DES
Number of PV Panel in Parallel			109.00	Numbe
				Capacity o
TOTAL NUMBER OF PV PANELS	3	109.00		Number of Batteries
Total Power of the PV system (W)		32,70	0.00	Number of Batteries

Erasmus+ add-on-skills

9. DESIGN OF THE INVERTER	
Power of the selected inverter (W):	1 200,00
NUMBER OF INVERTERS OF THE PROJECT:	4,00
8. DESING OF CHARGE CONTROLLER S	YSTEM
Intensity of the selected Charge Controller (A):	60,00
NUMBER OF CHARGE CONTROLLER OF THE PROYECT:	2,00
7. DESIGN OF THE BATTERY BA	NK
Number of autonomy days:	10
Capacity of the Battery Bank (Ah):	10 967,1
Number of Batteries in Serie in the Proyect:	2,0

6. CHARACTERISTIC OF THE BATTERIES

Renewable energy

HVAC design

UNIFI

UCO

VTDK

RTA

Renewable energy

HVAC design

UNIFI

UCO

VTDK

RTA

Renewable energy

HVAC design

UNIFI

UCO

VTDK RTA

Dati 🖌											
Attività	Membri del pr	Membri del progetto						Invita le persone a proiettare			
🗘 Da fare 🛛 G	Gruppi Nuovogruppo	Tutti i membri del progetto				Ruolo 🔻	Stato •	- Q	:		
Squadra	u tti i membri del progetto Utenti	Nome	Datore di lavoro	Ruolo	Stato	Ultimo acco	esso 🛧				
🗘 Impostazioni 🗸 GI	RUPPI PERSONALIZZATI	ANDREA MENCI andrea.menci1@stud.unifi.it		amminis	Attivo	11 luglio 2022, 01:36					
N	lessun gruppo trovato	Tomasz Wysocki tomyy1337@gmail.com		amminis	Attivo	11 luglio 20	22, 01:35				
		Kaspars Pigaškovs kp18041@edu.rta.lv	Kaspars	Utente	Attivo	11 luglio 20	22, 01:05				
		Edita Sarkiene projectaddes@gmail.com		Utente	Attivo	11 luglio 20	22, 01:05				
		Anamaria VALDERRAMA RUFASTO	Anamaria Valderrama	Utente	Attivo	11 luglio 20	22, 01:04				
Trimble Connect		AddOnSkills - Team	3 •			a		?			

BIM

Dati	^	Fsplorate)re				 : [Aggiungere
a Esploratore	••	Lopiorate						
Visualizzazioni			Nome 🛧	Modificato da	Modificato il	Dimensione	Tag	
🆻 Rilasci			01_BEP	ANDREA MENCI	11 luglio 2022	0 B		
Attività			02_IFC	ANDREA MENCI	11 luglio 2022	1,82 MB		
Squadra			03_RVT	ANDREA MENCI	11 luglio 2022	8,76 MB		
Impostazioni	~		04_DOCUMENTI	Kaspars Pigaškovs	11 luglio 2022	0 B		
			05_ALTRO	Kaspars Pigaškovs	11 luglio 2022	0 B		

ф	
BUT	
Renewable energy	
HVAC design	
UNIFI	
UCO	
VTDK	
RTA	

1.0			
amily:	System Family: Basic Wall	×	Load
ype:	1	~	Duplicate
			Rename
ype Paran	neters		
	Parameter	Value	=
Construc	tion		\$
Structure		Edit	
Wrapping) at Inserts	Do not wrap	
Wrapping) at Ends	None	
Width		514.0	
Function		Exterior	
Graphics			\$
Coarse So	ale Fill Pattern		
Coarse So	ale Fill Color	Black	
Materials	and Finishes		\$
Structura	Material	Concrete Masonry Units	
Analytica	l Properties		\$
Heat Tran	isfer Coefficient (U)	0.1902 W/(m ² ·K)	
Thermal I	Resistance (R)	5.2568 (m ² ·K)/W	1
Thermal I	Mass	48.81 kJ/K	
Absorpta	nce	0.700000	
Roughne	SS	3	
Identity	Data		\$
Timelma			L.
Vhat do th	ese properties do?		

IoT

BUT

Renewable energy

HVAC design

UNIFI

UCO

VTDK

RTA

Renewable energy

HVAC design

UNIFI UCO VTDK **RTA**

IoT

Erasmus+ add-on-skills

THANKS FOR YOUR ATTENTION

This project has been funded with support from European Commission. This publication [communication] reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.